Co-Fe-Nd-Sm (Cobalt-Iron-Neodymium-Samarium)

V. Raghavan

An isothermal section at 800 °C at a constant Sm/Nd ratio of 1 and a vertical section along the $Sm_{0.5}Nd_{0.5}Fe_2$ - $Sm_{0.5}Nd_{0.5}Co_2$ join were determined recently by [2002Wan] for this quaternary system.

Binary Systems

The Co-Fe phase diagram [1984Nis] is characterized by an extremely narrow solidification range. The facecentered-cubic (fcc) Fe forms a continuous solid solution γ with α Co over a wide range of temperature. The $\gamma \rightarrow (\alpha Fe)$ body-centered cubic (bcc) transformation temperature is initially raised by the addition of Co, reaching a maximum of 985 °C at 45 at.% Co. At 730 °C, the bcc phase of equiatomic composition orders to a CsCl type B2 structure. The Co-Nd phase diagram [1993Oka] depicts ten intermediate compounds: Nd_2Co_{17} , $NdCo_5$, Nd_5Co_{19} , Nd_2Co_7 , $NdCo_3$, $NdCo_2$, Nd_2Co_3 , $Nd_2Co_{1.7}$, Nd_7Co_3 , and Nd_3Co . The Co-Sm phase diagram [2000Cam] depicts eight intermediate phases: Sm₂Co₁₇, SmCo₅, Sm₅Co₁₉, Sm₂Co₇, SmCo₃, SmCo₂, Sm₉Co₄, and Sm₃Co. Among these, only Sm₂Co₁₇ and SmCo₅ show small homogeneity ranges at high temperatures. The Fe-Nd system contains two intermediate phases. Nd_2Fe_{17} has the Th_2Zn_{17} type of rhombohedral structure. Nd₅Fe₁₇ has hexagonal symmetry and

forms peritectically at 780 °C [1990Lan]. The Fe-Sm phase diagram [1982Kub] depicts three line compounds, Sm_2Fe_{17} , $SmFe_3$, and $SmFe_2$. They all form peritectically, with the final eutectic solidification of Sm-rich alloys at 720 °C. In the Nd-Sm system [Massalski2], there are no intermediate phases. β Nd and γ Sm (both bcc) form a continuous solid solution. For crystal structure data on the above binary compounds, see [Pearson3].

Ternary Systems

The review of the Co-Fe-Nd system by [1992Rag1] summarized the lattice parameter variation of the Th₂Zn₁₇ type rhombohedral solid solution Nd₂(Fe,Co)₁₇. The review of the Co-Fe-Sm system by [1992Rag2] gave a schematic liquidus surface, a reaction scheme and two isothermal sections at 1200 and 800 °C. No ternary compounds were found. There appear to be no reports on the phase equilibria in the Co-Nd-Sm and Fe-Nd-Sm systems.

The Quaternary Phase Equilibria

With starting metals of purity of 99.9% Co, 99.8% Fe, 99.9% Nd, and 99.9% Sm, [2002Wan] melted 45 alloy com-

Fig. 1 Co-Fe-Nd-Sm lattice parameter variation of $R(Fe_{1-x}Co_x)_2$ alloys; $R = Sm_{0.5}Nd_{0.5}$ [2002Wan]

Fig. 2 Co-Fe-Nd-Sm isothermal section at 800 °C for Sm/Nd = 1 (R = $Sm_{0.5}Nd_{0.5}$) [2002Wan]

positions with Sm/Nd = 1 and (Sm + Nd) \leq 33.3 at.% in an arc furnace under Ar atm. The samples were given a final anneal at 800 °C for 15-20 days and quenched in water. The phase equilibria were studied by differential thermal analysis (DTA), x-ray powder diffraction, optical microscopy, and electron probe microanalysis.

In the composition range studied, seven quaternary solid solutions based on binary compounds were found by [2002Wan]. Defining $(Sm_{0.5}Nd_{0.5}) = R$, the MgCu₂-type cubic structure is stable at RFe₂, even though NdFe₂ does not exist. X-ray analysis of the solidified alloy indicates a continuous solid solution R(Fe,Co)₂ (denoted 1:2) for all values of Fe or Co. The lattice parameter variation of this solid solution is shown in Fig. 1 [2002Wan]. However, the vertical section determined by [2002Wan] along the RFe₂-RCo₂ join indicates the presence of the liquid phase at the Fe rich end of the line at 800 °C. Also, metallographic observations indicate that R(Fe,Co)₂ becomes a continuous solid solution only below 800 °C.

The Be₃Nb (or PuNi₃) type rhombohedral phase R(Fe,Co)₃ (denoted 1:3) is stable at RCo₃ and dissolves Fe up to the composition R(Fe_{0.9}Co_{0.1})₃. The Nd₅Fe₁₇ phase is stable at R₅Fe₁₇ (denoted 5:17) and dissolves less than 4 at.% Co. The Ce₂Ni₇ type hexagonal phase (denoted 2:7) is stable at R₂Ni₇ and dissolves Fe up to the composition R₂(Fe_{0.2}Co_{0.8})₇. The Ce₅Co₁₉ type rhombohedral phase (denoted 5:19) is stable at R₅Co₁₉ and dissolves less than 4 at.% Fe. The CaCu₅ type hexagonal phase RCo₅ (denoted 1:5) is stable and dissolves Fe up to the composition R(Fe_{0.1}Co_{0.9})₅. The Th₂Zn₁₇ rhombohedral phase (denoted 2:17) forms a continuous solid solution R₂(Fe,Co)₁₇ for all values of Fe or Co. The isothermal section of [2002Wan] at

800 °C and Sm/Nd = 1 (R = $Sm_{0.5}Nd_{0.5}$) is redrawn in Fig. 2 to agree with the accepted binary data, incorporating the seven quaternary solid solutions described above. No true ternary or quaternary compounds were found by [2002Wan].

From the DTA results, [2002Wan] constructed a vertical section along the RFe_2 - RCo_2 join. Here, the liquid phase on cooling transforms to mixtures of liquid plus solid phases with less than 33.3 at.% R and finally solidifies as a continuous solid solution of $R(Fe,Co)_2$.

References

- 1982Kub: O. Kubaschewski: "Iron-Samarium" in Iron Binary Phase Diagrams, Springer-Verlag, Berlin, 1982, pp. 104-05.
- **1984Nis:** T. Nishizawa and K. Ishida: "The Co-Fe (Cobalt-Iron) System," *Bull. Alloy Phase Diagrams*, 1984, 5(3), pp. 250-59.
- **1990Lan:** F.J.G. Landgraf, G.S. Schneider, V. Villas-Boas, and F.P. Missell: "Solidification and Solid State Transformations in Fe-Nd: A Revised Phase Diagram," *J. Less-Common Met.*, 1990, *163*(1), pp. 209-18.
- 1992Rag1: V. Raghavan: "Co-Fe-Nd (Cobalt-Iron-Neodymium)," Phase Diagrams of Ternary Iron Alloys. Part 6, Ind. Inst. Metals, Calcutta, India, 1992, p. 622.
- 1992Rag2: V. Raghavan: "Co-Fe-Sm (Cobalt-Iron-Samarium)" in Phase Diagrams of Ternary Iron Alloys. Part 6, Ind. Inst. Metals, Calcutta, 1992, pp. 645-54.
- **1993Oka:** H. Okamoto: "Co-Nd (Cobalt-Neodymium)," J. Phase Equilibria, 1993, 14(1), pp. 122-24.
- **2000Cam:** M.F. de Campos and F.J.G. Landgraf: "Remarks on the Co-Rich Region of the Co-Sm Diagram," *J. Phase Equilibria*, 2000, *21*(5), pp. 443-46.
- **2002Wan:** B.W. Wang, W.L. Liu, G. Jin, Y.M. Hao, Y.X. Li, X.M. Jin, and Z.D. Zhang: "Phase Diagram of the Fe-Co-R System with $R \leq 33.3$ at. % Sm_{0.5}Nd_{0.5}," *Z. Metallkd.*, 2002, 93(2), pp. 143-46.